- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Ahmadi, Elaheh (1)
-
Arafin, Shamsul (1)
-
Ghosh, Arnob (1)
-
Hasan, Syed_M_N (1)
-
Jian, Zhe_Ashley (1)
-
Khan, Kamruzzaman (1)
-
Sankar, Shrivatch (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we report the molecular beam epitaxy-grown InGaN-quantum disks embedded within selective area epitaxy of GaN nanowires with both Ga- and N-polarities. A detailed comparative analysis of these two types of nanostructures is also provided. Compared to Ga-polar nanowires, N-polar nanowires are found to exhibit a higher vertical growth rate, flatter top, and reduced lateral overgrowth. InGaN quantum disk-related optical emission is observed from nanowires with both polarities; however, the N-polar structures inherently emit at longer wavelengths due to higher indium incorporation. Considering that N-polar nanowires offer more compelling geometry control compared to Ga-polar ones, we focus on the theoretical analysis of only N-polar structures to realize high-performance quantum emitters. A single nanowire-level analysis was performed, and the effects of nanowire diameter, taper length, and angle on guided modes, light extraction, and far-field emission were investigated. These findings highlight the importance of tailoring nanowire geometry and eventually optimizing the growth processes of III-nitride nanostructures.more » « less
An official website of the United States government
